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THE CONTACT PROBLEM OF ELASTICITY THEORY FOR BODIES WITH CRACKS* 

1.x. KUDISH 

The plane contact problem of a stamp impressed into an elastic half-plane 
containing arbitrarily arranqed rectilinear subsurface cracks is formulated 
and investigated by asymptotic methods. Partial or total overlappinq of 
the crack edges is assumed. The problem reduces to a system of linear 
sinqular integrodifferential equations with side conditions in the form 
of equalities and inequalities. An analytic solution of the problem is 
obtained in the form of asymptotic power series /l/ in the relative 
dimension of the greatest crack. Dependences of the first terms of the 
asymptotic expansions of the desired functions on the mutual location of 
the cracks and the contact domains, the pressure and friction stress 
distributions, and the crack size and orientation are determined. Numerical 
results are presented. 

Analysis of the influence of the stress-free boundary of the half- 
plane on the state of stress and strain of the elastic material near the 
cracks is presented in /2, 3/. The problem of a crack in an elastic plane 
whose edges overlap partially is also examined in /3/ by numerical methods. 

1. Formulation of the problem. We consider a plane problem on the frictionless 
interaction of a stamp with the base z = f(x) and a crack-weakened elastic half-plane (the 
problem takinq friction into account is investigated in Sect.3). It is assumed that there 
are H rectilinear subsurface cracks in the half-plane, on whose edges there is no friction. 

In dimensionless variables 

{s', T', a, C, x~O’, yk”} = {x, z, xtr x+p xb”, y,“}/bo, 14’7 PX’) =I 

the problem reduces to a system of equations with additional conditions in the 
equalities and inequalities /4/ (the primes are omitted) 

(1.1) 

form the 

(1.3) 

(w 
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Here x is a coordinate of points in the contact domain , a and c are coordinates af the 
contact domain boundaries, (zbO, yip) are coordinates of the centre of the k-th crack, 8~ and 

% are, respectively, half the crack length and the angle between the abscissa axes of the 
k-th local and the fundamental coordinate systems [the general form of the bodies making 
contact is displayed in Fig-l), SE is a coordinate of points in the local coordinate system 
associated with the k-th crack, q = q(x) and JJ~ = pr (xt) are, respectively, the contact 
pressure and stress acting on the edge of the k-th crack, VK = v~(x$) and ux = u%!(x~) are the 

jumps, respectively, in the normal and tangential displacements of the edges of the k-th 
crack, f(t) is the shape of the base of the stamp, 6 is the proximity of the bodies, P is 
the force acting on the stamp in the normal direction, q. and b. are, respectively, the 
characteristic pressure and the half-width of the contact domain, qO b, = 2n-‘P, and E’= 
E/(1 - Y”) is the reduced elastic modulus. 

Fig.1 

Therefore, for the given constants zkol cc,,& (k=1,2, . . ..N) and the function f(x) from 
the equations and inequalities (1.2)-(1.7) it is retlut,uired to determine the constant 6" and 
the functions Q (x),Q (rk), uk (Q) and pk (+) (k= t,&. .,, N), 

2, Asymptotic investigation of the problem. We examine the case when all the 
cracks are small compared with the size of the contact area, i.e., 6, = max I$,.<%. The 

examination of that structure of the system-of cracks in an elastic half-plane for which the 
spacing between any two cracks substantially exceeds their size, i.e., 

2," - z,z">> 60, Vn, k, s # k (2.1) 

is here of greatest practical interest. (The asymptotic relationship g-h means that 

(99)'" - (h, r;)% It is evident that if g-h, then g--h. The asymptotic relationships 

g,> h and g< h are determined analogously.) 
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of subsurface cxacks belongs to the half-plane, then IrnG".Im .&.“<O, 
it follows from (2.1) that 

z,'- fk"))&,, Vn, k, n + k (2.2) 

We moreover assume that the cracks in the elastic half-plane lie at depths under the 
surface that considerably exceed their size. This assumption can be expressed in the form 

2," - Go> &, Ifs (2.3) 
The following estimates obviously result from (2.1)-(2.33 

(2.4) 

We now solve (1.2) for q(x) by assuming that the shape of the stamp base f(x) is such 
that q(x) has a square root singularity at the points x=a and x = e., By using /5/, we 
obtain 

We convert (2.5), for which we invert the orders of summation and integration. As a 
result of these transformations, from (2.5) and the integral differentiated once with respect 
to T, (see /2, p-63, and the relationships (1.3)) 

the final form of the equation for q(x) results 

(2.7) 

(2.8) 

ie-'@k (Tk-Tk)[(C‘f.a)(3+Tk)/2----+Tkl 
(5 - ipkP 1/(T, - a) (Pk -c) 

It follows from (2.0) and the estimates (2.1)-(2.4) that the kernels 
u,& (& %) and V,,, @, %) 

zk (t, r), D,, (t* %), 
can be represented in the form of asymptotic series in powers of 8, 

and 8, (see (1.6)) that 

We note that the quantities u&&,, and vekjm are independent of 6,, &k,&,, t since they 

are functions of the constants a,, akrxnO, I/no,xkO and yko. An analogous dependence also holds 
for the qUdntitieS z,(z) and L?&)(t). 

We will transfer directly to the asmyptotic solution of the system of equations and 
inequalities (2.6)-(2.8), (1.4)-(1.7) for eO((l. We will seek the solution of the above- 
mentioned system by the method of regular perturbations /I/ in the form of asymptotic series 
in powers of 6, 

We make an asynptotic analysis of (1.4) and (2.7). Substituting the representation 



(2.10) into (1.41, we find by using the expansion (2.9) for the successive terms of the 
expansions p,, and v,,,u,, 

P&I (4,) = npno (5,) - nc&, F& (5”) = - ~6, 

F&I (d = np,, (s,) - ncLl -#- xs - Z& 
0 

i 6 
n %I (4 = - WlOl T x,- nd,, 

lC - 
Ci&j + iC$j=x s qr,(7)Dnj(7)d~ 

a 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

The quantities c& and &j are obviously independent of x,,. In deriving (2.111-(2.13), 
we also took account of the relationships u,,lt(f*)=k (-+I)=0 and 

Furthermore, substituting (2.9) and (2.10) into (2.71, we obtain for the first terms of 
the asymptotic expansions of s(x) 

90 (4 = 9" (4, 91 (4 = 0 (2.16) 

(2.17) 

We turn now to a further analysis of (2.11)-(2.14). To do this, we perform an asymptotic 
analysis of the system of alternative equalities and inequalities (1.7) for 60<=(, where 
the functions v,, and p,, satisfy (2.10). We will have 

We assume that Y,,~ (x~)> 0. Then fromthe first condition in (2.18) it follows that 
p,,J(&,)= 0, Vj> 0 for so< 1, and the sign of vnJ(x,,) does not influence the compliance 
with the second inequality in (2.18) for j> 1. We assume the opposite, i.e., ho (4 = 0. 
Then the realization of one of two cases is possible: a) PRO &J-C 0; b) pno (4 = 0. In 
case af wewill have p,,(&)<O for 6,<%outsidethedependenceonthe values of &j(G) for i> 3. 
We find v,~(,z,)= 0, VI> 0 here from the last of the relationships (2.18). In case bl we 
obtain that pno (x,,) = 0 and v,,~ (z,,) = 0 and the selection of the relationships for Pni hn) 
and vnl(x,,) for j> 1 is carried over the next approximation in So< 1, which is done 
completely analogously. 

From the last relationship in (1.7) and (2.10) it obviously follows that 

v,,h- (+I) = u,,k (&l) = 0, Vn, k (2.19) 

10. We consider the problem of the state of stress and strain of the material near cracks 
in the zeroth approximation. The problem is here described by (2.11) in combination with the 
system of equalities and inequalities (2.19) and 

pno (XJ = 0, %I (4 > 0; p*o 6%) < 07 480 kan) = 0 (2.20) 

which follows from an asymptotic analysis of (1.7) by using (2.10) (see the analysis of system 
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(2.18)). 
We assume that u,,~ (z,,)> 0, VZ,,E (-1, 1). Then we obtain from (2.20) that Pno (&I) = 0, 

V&l E (--I, I), and we find v,,~(x,,)- &,fl/1 -x,,"> 0. Therefore we have cd> 0. It is seen 

that for C& 6 0 the functions %o (a) = 0, Pno (G) = c& < 0, V&E(-I, 1) satisfy relations 

(2.11) and (2.20). We obtain U,,, (X,,) = Ci,j 1/m /5/ from the second equation of (2.11) 
and (2.19). Therefore, the solution of problem (2.111, (2.191, (2.20) has the form (6(.) is 
the Heaviside function) 

It follows from an analysis of the system of alternative equalities and inequalities 

(2.18) that V,,O (x,,) > 0 and Pnj (x") = 0, x,, E (-1, l),Vi > 0 for c& > 0 (see (2.21)) and 
the sign of u,,,(.r,), Vj > 1 is not essential. Consequently, we obtain from (2.12) /5/ by using 

(2.161, (2.19) and (2.20) for &,>O 

L’n1(4 6, = 260 c;,,xn 1f 1 - 5 2 n t 

We find analogously /5/ from (2.131, (2.19) and (2.20) for &,,>O 

(2.22) 

L’,? (CT,,)= [ A,,’ + $ B; (1 + 24 r/l - x,,* (2.23) 

u"?(s,)-[An$~B,i(l+2~~a)]1/1--r.P 

(2.24) 

To determine the constants A," and Bniit is sufficient to replace the superscript r by i 
in (2.24). 

For cL,<O it follows from an analysis of the system of alternative equalities and 
inequalities (2.18) that (see (2.21)) P,,~(x~)<O and u,,j (z,,) = 0, z,, E (-1, I), Vj > 0, and the 
sign of Pnj (4 is not essential for j >I. Consequently, we obtain for c&,(0 from (2.12), 
(2.13), (2.15)-(2.17), (2.19) and (2.20) 

IL1 (Gl) = ~,-%c:,01 5, (2.25) 

P~Z (.z,) = A,' + B,'x,,* (2.26) 

while the function ZL~~(X,,) is determined from (2.22). 
2O. We examine the case c&,, = 0 when we have cnO (XJ = pno (G) = 0, Vs, E (-1,1) in the 

zeroth approximation (see (2.21)). The summation in the system of equalities and inequalities 
(2.18) here starts with j = 1. Hence, it is necessary to analyse system (2.12)-(2.17) in 
combination with the equalities and inequalities (2.18). For CT,, = 0 an analogue of the 
relationship (2.20) follows from (2.18) 

Pn1 (G) = 0, Gil (G) > 0; Prz1 c&l) < 07 &, (4 = 0 (2.27) 

We will assume that CL,, > 0. Then from the form of the expressions for vnl (x~) in (2.23), 
which is obtained under the condition Pnj(xm) = 0, X,E (-1, I), it can be assumed that the 
segment (-1, 1) occupied by the crack is separated into the segments (-4, b,,) and (b,,. 1) 
on which the relationships v,(x$,) = 0 and v,,(z,,)> 0 are satisfied. For convenience we 
introduce into (1.4)-(1.6) and (2.9) the following change of variables 

I, = [I + b,, + (1 - b,,,) yl/2, t = Ii + b,, + (1 - b,,) 7]/2 

The constant b,, is unknown here and can also be expanded in powers of 6, 

As a result of the above-mentioned transformations, by using (2.19), (2.27), we obtain 
from (l-4)-(1.6) and (2.9) for v,,, (a,), Z~ E Qnor 1) 

(2.29) 



794 

We note that the constant pno is unknown in (2.29) and is determined from the condition 

pnl (-1) = 0 (2.30) 

Then we obtain from (2.29) /5/ 

We use (1.4) transformed by the above-mentioned method and the integral /6/ 

to determine the function p,,,. 
As a result of the transformations described we obtain 

6% 
Pm (Y) =-=_ - -p& c~~~[-(1+~)Yf(l-P~)~~ - 

Y2)] @(Y2-- 1) 

(2.31) 

(2.32) 

(2.33) 

We now determine pno = -*/3. by using (2.30) and '(2.33). Substituting the value found 
for fin0 into (2.31) and (2.33), and returning to the variable z,, (z~ = [I -I- f$,o -I- (1 - ho) !11/2), 
we will have for c&l> 0 

Analogously for c& = 0 and c& < 0 we obtain &, = 'i, and expressions (2.34) for 
unz and pnl in which the signs of &, and the right sides of the equalities are changed. 

We note that for CL,> 0 and c~Ol < 0 the functions u,, and'u,, are determined, respect- 
ively, from the relationships (2.22)-(2.24). We will now obtain the function un2 for the 
cases under consideration, It can be shown that for cL~ = 0 and & > 0 the function 
Q(Y) satisfies the problem 

FL& (y) = - 31: 
I-B, ~{~B,‘[1+Pno-t~1-Pno)Y12+A,‘}+ (2.35) 

6 
n-L &#l 

4 

It is here necessary to note that the sign of the function v,~(!J) does not influence 
the satisfaction of the first inequality in (2.18) for ly I< 1, while the constant &,* is 
unknown and determined from the solution of the equation 

Pn2 (-1) = 0 (2.36) 

The solution of (2.35) for fin0 = --'I, has the form /5/ 

va2(y)=~[~,‘+~L1,,‘(~~6~+4~‘)+ (2.37) 

-&&nl(l-2Y) Vi--!P l- 
As a result of a transformation of the appropriate equations we obtain for p,%(y) 

A,‘.+- 2 
Jr (1 -r&J* [&$+,I (Y) + (1 - ho) F&z (Y)] 

Furthermore, by using (2.31)-(2.33) and (2.37) for p,,,, = --'/3 we find from (2.36) 

+(2.39) 

Finally, by using (2.391, we obtain from (2.37) and 12.38) 



z?,? (0,) = q [A,’ + + B,’ (3% + I)] (30” + 1) x 

f 1 + 20, - 30,s 8 (1 -t 2a, - 3a,y 

1/r pnz (un) = T 
II 

~~‘(3~~ - 2) + -+ B,P(- 5 - 150, -t 270,~) 
I x 

795 

(2.40) 

vi 35 fl 

*w n u 2-2u,-- 1) 

Analogously, for c;,, = 0 and &I <O we obtain (2.39) and (2.40) for 0,~ and pnz. 
We evidently have from (2.12), (2.21) and (2.27) for &,, = &, = 0 

unj (G) = &j (&a,) = 0, V&z E (-1, 1) (1 = 0,l) (2.41) 

and the functions u,r (x~) and u,z (G) are also determined from the relationships (2.22)-(2.24). 
The function vnz (zJ is here not determined by the equality from (2.23). 

30. We consider the case c&, = cL1 = 0 when the equalities (2.41) are satisfied. The 
summation in (2.18) here starts with j=2 and the analogue of the relationships (2.20) is 
valid for 'u,,~ (x~) and pnl (x,) 

Pna (Jn) = 0, “nz (GJ > 0; Pnz c%) 6 0, vn2 h) = 0 (2.42) 

Furthermore, it will be shown that depending on the value of the ratio A,,:lB,’ each crack 
can have a different configuration: one or two symmetrically arranged sections with joined 
edges. The evenness of the functions vnz(zn), %unz(&,) and pnz(zR) follows from (2.13), (2.15) and 
conditions (2.19). 

We first consider the case when u,,~ (z,J = 0, VX,,E (-1,l). Then we obtain from (2.13), 
(2.15) and (2.24) 

%z (r,) = 0, pnz (G) = A,' + K,r~,2 (2.43) 

where the functions unz(zn) and p,z(s,,) from (2.43) satisfy (2.42) for 

A,’ < 0, B,,* 6 0 or A,’ + B,’ < 0, B,,’ > 0 (2.44) 

We consider the case when there is one symmetrically located section with open edges in 
the segment (-1, 1) occupied by the n-th crack. Let this be the segment (-&, b,,&. The 
constant b,,a here is not arbitrary but satisfies the relations: a) pnn(bn?)= 0, b,,( 1 (see 
(2.42)); or b) b,,, = 1. Moreover, it follows from (2.24) that v,,&-,)> 0,. ~~fE(-b,,, b,,%) and 
PM (G) < 0, X, E (-1, -bd IJ (b,z, 1) in case a). 

Taking account of the conditions l&(&b,,)= 0 in case a), the solution of the first 
equation in (2.131, (2.4) has the form /5/ 

vnz (xn) = -+ [2Ar + 1/&,’ @ifs, + 2~,,~)] x 

l/i$=- In2 8 (t& - xn,“) 

P~Z (G) = 1~ I {[A,’ -k &’ @n2 - ‘/a&)]/~ z,,’ - b%} x 
13 (xn2 - b:,) ’ 

(2.4:) 

Here we have used the fact that pnz (x,,) = 0, L& E (-bnp, b,,J. 
We now find from the condition p,,,(b,,,)= 0 

b,,z2 = -2A,,‘IB,,r 

Substituting the expression for b,,, from (2.46) into (2.45), we obtain 

u”z (xn) = - $ 2A r 'i. 
_2-*=a 

> ( 

2A T 

Bllr 
8 -~_xn~ 

Brar > 

Pna h,) = hr 1 a;, I($$ + x2) “’ 0 ($ + X,,‘) 

(2.46) 

(2.47) 

Furthermore, from (2.46) and (2.47) and the conditions listed above (corollaries of 
(2.42)) and the condition b,,*a> 0 we obtain relations in the constants Anr and B,," 

A,,’ > 0, B,,’ < 0, 2A,’ + B,,’ < 0 (2.48) 

Let-us study case b). It is seen that the solution (2.45) in which we must put b,, = 1, 
is valid. Consequently, we find from (2.45) 
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(2.49) 

It follows from system (2.42) that u,~ (z,)> 0, %nE (-1. I), where this last inequality is 
valid when one of the following system of inequalities holds: 

A,'> 0, B,‘< 0, 2A,’ -I- B,? > 0, or B,‘>O, 
6A,‘+ B,‘pO, or A,r>O, B,‘=O. 

(2.X) 

It follows from (2.44), (2.48) and (2.50) that only the domain of the parameters A,' 
and B,’ subjected to the inequalities 

Ar < 0, B,,' > 0, A,’ + B,’ > 0, 6 A,’ + B,,’ < 0 (2.51) 

remains uninvestigated. 

We will now investigate this domain of the parameters. We assume that there are two 

symmetrically arranged zones (--b,,, -a,,) and (a,,, b,,) in the segment (-1,l) on which the 

edges of the n-th crack are open, i.e ., v,~(x,)> 0. It can be shown that the constants 

b,, = 1, an2 from 

E (1/l --a”,,, 2 3G- 
- =&lz 

I + &4nT/B,’ 

Kdl--;,) a;, + 1 + 6.1n'/Bn,' 
(2.52) 

and the functions 

where F((x,~) 
respectively, 

equation from 

ad E (xv 11) are elliptic, and K (n)and E(q) complete elliptic integrals, 

of the first and second kinds /7/, are a solution of the problem for the first 

(2.13) with the conditions v,,, (i_b,J = v,,~ (+a,,z) = 0; p,,t (%) < 0 for 1 zn 1 < an2 
and I 5 I > bn2 - An expressions for the difference of the integrals 

(2.53) 

obtained according to the theory of residues was used in deducing 

(2.53). 
The solution of (2.52) for different values of A,‘IB,,’ is 

represented in Fig.2. 
We note that the function u,,%(x~) in the cases studied in Sect. 

3 is, as before, determined from (2.23) while the quantities ht 

and pK from (2.15)that are in (2.17), (2.23), (2.24) and (2.26) 

equal (see (2.21)) 

(h,, pv,) = ‘l,n Gil 0 (ckw), &lo) (2.54) 

4O. We now calculate the intensity factors kin* and kzn* as well as the angles of the 

initial propagation directions of the n-th crack 8,*. The superscript 1 here refers, 

respectively, to the crack tips with z, =&I. Following /2, 3/, we will have 

(2.55) 

Inserting the dimensionless quantities kjn*’ = kjnfl(4oJ’L) for kj,*(j = 1, 2) we find from 

(1.1) and (2.55) (the primes are omitted) 

kg + i&k = Tx;l;l 1/ 1 - xn2 [II,’ (5,) + iu,, (XJ] (2.56) 
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By using the solutions obtained we evaluate the stress intensity factors 

k$,= c&o _t 1/z&,&, + h&, + 1/&,2c:,, - A’ + . . . 

k& = do, & ‘la&,&,, + W&o + 1/zS,2c;, -Ar+:.., 

cL,>O; k&=0, cFm,<O 

For c&,, = c&r = 0 we obtain, respectively 

The constant A’ is determined from (2.61) by replacing UikOl (V&l) and lJAtiO, (V&,,). 
After having computed the intensity factors k,,* by using one of the formulas (2.57)- 

(2.601, following /2/, we determine the angles 

k$,=O for A,‘<O, B,‘<O; A,,‘+B,‘~O, B,‘>O 
A,‘>O, Bd<O, 2A,‘+ B,‘<O; 

k$, = W&0 + 1/&,2c& - A’ + . . . for A,r > 0, B,’ < 0, 
2A,’ + B,,’ > 0; B,’ ) 0. 6A,’ + Bnr > 0 

(2.57) 

(2.58) 

(2.59) 

(2.60) 

A,’ < 0, B,‘> 0, A,’ + B,’ > 0, 6A,’ + B,’ < 0 
N 

A&+ 
r 6k2 [&cd (c&o) UiIkOl - c&lLxl,,,] (2.61) 
I;=1 

k* - f (k$J' + 8 (k&P 
0,*= 2 arctg In 

&ii 
(2.62) 

3. Qualitative and numerical results. We will not a number of qualitative 
properties of the solution of the problem. It follows from (2.10), (2.14)-(2.17) and (2.54) 
that the contact pressure p(x) experiencestheinfluence of the cracks, except starting with 
the second approximation, i.e., the magnitude of this influence is proportional to 6,". The 
zeroth terms of the expansions of the jumps in the displacements v, (5,) and u, (z,) and the 
stress p,,(s,,) (see (2.10) and (2.21)) on the edges of the crack under consideration are 
determined by the mutual location of the cracks and the contact domain as well as the pressure 
distribution and the crack orientation and are independent of its size and the presence of 
other cracks (see (2.14)). It follows from (2.55), (2.57) and (2.58) that the zeroth terms 
of the expansions of the dimensional intensity factors kl,,f and k2,,* are proportional 

to 1/c and the properties in the rest are completely analogous to the properties of the 
zeroth terms of the expansions of v,,,u,, and in. The first terms of the expansions of v,,,u,,, 

in, km* and k& moreover dependonthe crack size, while the second and subsequent terms also 
dependonthe presence of other cracks. 

By virtue of the dependence of the solution constructed on just the integrals C:nhj and 
, 

C*bj (see (2.14)), a number of generalizations is possible. Problems taking account of 
surface roughness /8/, sliding friction (linear and non-linear) /9/, friction with slippage 
and adhesion /lo/, lubrication /4/, wear /ll/, etc. can be investigated analogously. The 
zeroth term of the pressure asymptotic q,,(z) will here be determined by the solution of the 
appropriate problem without taking friction into account, Ql (2) = 0, while the second term 
of the expansion will depend on the presence, location, size, and orientation of the cracks. 
When studying problems with previously unknown contact area, its boundaries will be independent 
of the presence of cracks to O(6,) accuracy. Expressions for the functions nn, %,, in and 

the constants kl,,* and k,* agree with the corresponding expressions obtained in Sect.2 
(it should here by kept in mind that the role of the quantities &j and &j will here be 
played by different integrals in general). Distinctions occur only in the case of a problem 
with a previously unknown contact domain, in the second terms of the expansions of these 
functions and are associated with variations in the contact domain boundaries. Nevertheless, 
even in this case the solution of problems for %a? %a and pnz can be reduced to a form 
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analogous to that investigated in Sect.2. 
We examine the results obtained for the problem with friction in detail in the case of 

total slippage. The first equation in (1.2) is here replaced by the equation /4, 9/ 

(3.1) 

and, in addition, the right-hand sides of (1.4) are modified (see (3.3)). In (3.1) $=11,(Q) 
is a fairly smooth'pressure function governing the friction stress, h is a constant playing 
the part of the coefficient of friction. The solution of (3.1) for h<c 'i and S,<l can 
be constructed by methods from 191. When examining a problem with a previously unknown 
contact domain the conditions q(u) = q(c)= 0 must be appended to (3.1). Moreover, performing 
the analysis described in Sect.2, we can see the validity of formulas (2.21)-(2.26), (2.34), 
(2.401, (2.431, (2.44), .(2.46)-(2.54), (2.571-(2.61) with the appropriate replacement of the 
expressions for &j + i&j, q* (x) from (2.61, (2.15)-(2.17). 

In particular, by confining ourselves to a consideration of two-term expansions for the 
problem with previously unknown boundaries a= --b,c= b we obtain for p(g)= p and f(z)=@+ 
d)" /5/ 

p0 (5) = cos ny (b, + 5)“s-7 (b, - .)‘/*+v, *, = (,-4yz)-‘!. (3.2) 

d, = - 2yb,, 
1 

y =y arctg;; ql(f)= 0 

qk (t) [‘,I (t) - hG,j (‘11 dl (3.3) 

In 0.31 we took r(z)= --)19(z) and the functions G,$(l) are coefficients of the expansions 
in powers of 6,~~ for the kernel G,(t,& that determines the influence of the tangential 
stress to the half-plane surface on the state of stress and strainofthe elastic material near 
the cracks. The functions G,(t, %) and &,(t) are determined from the relations /2/ 

G, (1,Z”) I + 
[ 

I z-r+ 
* _ @--z% 

t--K, -e 
-zia, t--X _n 

(f -x,1* 1 
(3.4) 

n 

G, (1, z,,) = 5, (S&j Gnj (t) 
j=o 

We present below numerical results for kin+ and k9n+ obtained on the basis of the formulas 
presented fat yno= -0.2 and S,= 0.1, where the coefficient of friction h=0.1 corresponds 
to curvel, and L= 0.2 to curve 2. For h = 0.i we have y = 0.015SV b, = 1.0005, d, = --0.0318, and for 
h = 0,2-y = 0.0317, b, = 1.002, d, = -0.0635. 

Curves of the dependence of the stress intensity factor kt,,+ for the cases of horizontal 
cracks u,,= 0 (Fig.3) and vertical cracks a,=ni2 (Fig.41 behave analogously. At the same 
time, for u,,= n/L? the value of k,,+ is more than an order greater than for the case a, = 0. 
In addition, the quantity kin+ increases substantially as the coefficient of friction increases, 
and reaches a maximum in the immediate vicinity of the contact domain boundary on the side 
opposite tothedirection of stamp motion. When there is no friction (h= 0) the stresses are 
compressive everywhere in the half-plane, the cracks are closed, and consequently, the 
intensity factor ktd is identically zero. As the degree of crack submersion ,q," increases, 
the intensity coefficient kl,’ (for those .rn: for which k,,+ >O) for the vertical crack.(a,= n/Z) 
decreases monotonically while for the horizontal crack (a, = 0) it first grows to the maximum 
value and then decreases to zero. In both cases kl,+ vanishes for z,'--1 for I Yn’ 1 - 1. 

The shear stress intensity factor kzni behaves differently. In both cases, for a,= 0 
(Fig.5) and a,=~/2 (Fig.61 the curves l kw = JLs,+ (fg) reach extremal values in the immediate 
neighbourhood of the contact domain boundaries. Moreover, the behaviour of the quantities 
kzn+ as a function of y," is different for different r,,O. For instance, for zR=--5 -2 --1 1 , . > 
the functions kpnC (yn”) have one extremum in the oases of horizontal and vertical cracks; while 
for 2," = 2.5 for a vertical crack and z,,O= 5 for a horizontal crack the functions kzn+ (yn’=) 

have two extrema. The crack orientation obviously exerts a strong influence on the quantity 

knn+ and quite a small influence on the value of the coefficient of friction h. 
We note that the quantities kl,+ and kl; (&+ and kzn-) are close for 6,el. 
In conclusion, it must be emphasized that the results obtained indicate the strong 

influence of friction on the process of fracture of elastic bodieb and can be used to estimate 
the longevity (margin) on the basis of a kinetic equation of crack development of the Paris 
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type - Moreover, we note that the analysis of the problem presented explains completely the 
fatigue test results of a model roller bearing /12, p-39/ for a different friction stress 
level. 
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